Search results for "contactless battery charging."
showing 5 items of 5 documents
Wireless battery charging: E-bike application
2013
Nowadays, Inductive Power Transfer (IPT) represents a widely investigated issue with respect to modern battery charging methods, by providing a wireless solution. IPT is applied across a large variety of applications, from Watt to kWatt power levels. Although IPT features great benefits in terms of safety and comfort, the most significant drawback consists of a relatively poor power conversion efficiency. In this paper, a 100W wireless charging equipment for E-bikes which improves efficiency is proposed. Complete magnetic structure design, as well as transmitter and receiver efficient architectures, are deeply exposed. The efficiency of the designed solution is shown by simulation results.
Wireless battery charging for electric bicycles
2017
The contactless solution is increasingly spreading as method of battery charging for Electric Vehicles (EVs). The standard technology of contactless EV battery charging is based on the Inductive Power Transfer (IPT) between two coupled coils, one connected to the electrical grid and the other one connected to the rechargeable battery. The IPT provides benefits in terms of safety and comfort, due to the absence of a plug-in operation. In this paper, an overview on the IPT applied to the battery charging of electric bicycles is provided, with some general considerations on the technical implications. Moreover, a prototype of contactless battery charging for E-bikes is proposed and described.
Control subsystem design for wireless power transfer
2014
Recently, the wireless power transfer has been increasingly employed. Particularly for the electric vehicles, the wireless solution is attractive for contactless battery charging, based on the Inductive Power Transfer (IPT). In this paper, a 150W prototype for IPT-based battery charging is presented and design criteria are reported. In addition to the power stage analysis, a proper control strategy is proposed. Simulation and experimental results are shown. The proposed control method aims at regulating the load current against variations in the magnetic coupling, so that the required amount of power can be supplied despite of unexpected decreases in the coupling efficiency.
Inductive Power Transfer for 100W battery charging
2013
Today, Inductive Power Transfer (IPT) is widely investigated to provide wireless battery charge. Potential applications range from a few Watts of handheld devices to kWatts of automotive applications. Despite of comfort and safety options, wireless charging features relatively poor power conversion efficiency. In the literature, several solutions are proposed addressing efficiency related issues. In this paper, a 100W wireless charging station for electric bikes which improves the power conversion efficiency is proposed. The magnetic structure design is analyzed thoroughly as well as the proposed power electronics system architectures of both the power transmitter and power receiver. The ef…